The HashMap

link

A hash table is made up of two parts: an array (the actual table where the data to be searched is stored) and a mapping function, known as a hash function.

The hash function is a mapping from the input space to the integer space that defines the indices of the array. In other words, the hash function provides a way for assigning numbers to the input data such that the data can then be stored at the array index corresponding to the assigned number.

For example, if I want to store <”Durant”>, I pass “Durant” into the hash function, and get (let’s say) number 3. So in the Hash Table, it will store table(3 -> “Durant”).

In this way, the searching of HashMap can almost achieve O(1) time in best case (like array access).

However,

link

For average case, It really is (as the wikipedia page says) O(1+n/k) where K is the hash table size. If K is large enough, then the result is effectively O(1). But suppose K is 10 and N is 100. In that case each bucket will have on average 10 entries, so the search time is definitely not O(1); it is a linear search through up to 10 entries.

In practise, we will just assume search in HashMap always O(1).

Below is a great conclusion.

link

Hash tables are O(1) average and amortized case complexity, however is suffers from O(n) worst case time complexity. [And I think this is where your confusion is]

Hash tables suffer from O(n) worst time complexity due to two reasons:

  1. If too many elements were hashed into the same key: looking inside this key may take O(n) time.
  2. Once a hash table has passed its load balance - it has to rehash [create a new bigger table, and re-insert each element to the table].

However, it is said to be O(1) average and amortized case because:

  1. It is very rare that many items will be hashed to the same key [if you chose a good hash function and you don't have too big load balance.
  2. The rehash operation, which is O(n), can at most happen after n/2 ops, which are all assumed O(1): Thus when you sum the average time per op, you get : (n*O(1) + O(n)) / n) = O(1)